高速排序算法
作者 July 二零一一年一月四日------------------------------------------
写之前,先说点题外话。
每写一篇文章,我都会遵循下面几点原则:一、保持版面的尽量清晰,力保排版良好。二、力争所写的东西,清晰易懂,图文并茂三、尽最大可能确保所写的东西精准,有实用价值。由于,我认为,你既然要把你的文章,发布出来,那么你就一定要为你的读者负责。
不然,就不要发表出来。一切,为读者服务。ok,闲不多说。接下来,咱们立马进入本文章的主题,排序算法。
众所周知,高速排序算法是排序算法中的重头戏。因此,本系列,本文就从高速排序開始。------------------------------------------------------一、高速排序算法的基本特性
时间复杂度:O(n*lgn)最坏:O(n^2)空间复杂度:O(n*lgn)不稳定。高速排序是一种排序算法,对包括n个数的输入数组,平均时间为O(nlgn),最坏情况是O(n^2)。
一般是用于排序的最佳选择。由于,基于比較的排序,最快也仅仅能达到O(nlgn)。 二、高速排序算法的描写叙述算法导论,第7章高速排序时基于分治模式处理的,对一个典型子数组A[p...r]排序的分治过程为三个步骤:1.分解:A[p..r]被划分为俩个(可能空)的子数组A[p ..q-1]和A[q+1 ..r],使得A[p ..q-1] <= A[q] <= A[q+1 ..r]2.解决:通过递归调用高速排序,对子数组A[p ..q-1]和A[q+1 ..r]排序。3.合并。
三、高速排序算法
版本号一:QUICKSORT(A, p, r)1 if p < r
2 then q ← PARTITION(A, p, r) //关键3 QUICKSORT(A, p, q - 1)4 QUICKSORT(A, q + 1, r)数组划分
高速排序算法的关键是PARTITION过程,它对A[p..r]进行就地重排:PARTITION(A, p, r)1 x ← A[r]2 i ← p - 13 for j ← p to r - 14 do if A[j] ≤ x5 then i ← i + 16 exchange A[i] <-> A[j]7 exchange A[i + 1] <-> A[r]8 return i + 1
ok,咱们来举一个详细而完整的样例。
来对下面数组,进行高速排序, 2 8 7 1 3 5 6 4(主元) 一、i p/j
2 8 7 1 3 5 6 4(主元)
j指的2<=4,于是i++,i也指到2,2和2互换,原数组不变。j后移,直到指向1..二、 j(指向1)<=4,于是i++i指向了8,所以8与1交换。数组变成了: i j 2 1 7 8 3 5 6 4三、j后移,指向了3,3<=4,于是i++i这是指向了7,于是7与3交换。数组变成了: i j 2 1 3 8 7 5 6 4四、j继续后移,发现没有再比4小的数,所以,执行到了最后一步,即上述PARTITION(A, p, r)代码部分的 第7行。因此,i后移一个单位,指向了8 i j 2 1 3 8 7 5 6 4A[i + 1] <-> A[r],即8与4交换,所以,数组终于变成了例如以下形式, 2 1 3 4 7 5 6 8ok,高速排序第一趟完毕。4把整个数组分成了俩部分,2 1 3,7 5 6 8,再递归对这俩部分分别高速排序。
i p/j 2 1 3(主元) 2与2互换,不变,然后又是1与1互换,还是不变,最后,3与3互换,不变,终于,3把2 1 3,分成了俩部分,2 1,和3.再对2 1,递归排序,终于结果成为了1 2 3.7 5 6 8(主元),7、5、6、都比8小,所以第一趟,还是7 5 6 8,
只是,此刻8把7 5 6 8,分成了 7 5 6,和8.[7 5 6->5 7 6->5 6 7]再对7 5 6,递归排序,终于结果变成5 6 7 8。ok,全部过程,全部分析完毕。
最后,看下我画的图:
高速排序算法版本号二
只是,这个版本号不再选取(如上第一版本号的)数组的最后一个元素为主元,
而是选择,数组中的第一个元素为主元。/**************************************************/
/* 函数功能:高速排序算法 *//* 函数參数:结构类型table的指针变量tab *//* 整型变量left和right左右边界的下标 *//* 函数返回值:空 *//* 文件名称:quicsort.c 函数名:quicksort () *//**************************************************/void quicksort(table *tab,int left,int right){ int i,j; if(left<right) { i=left;j=right; tab->r[0]=tab->r[i]; //准备以本次最左边的元素值为标准进行划分,先保存其值 do { while(tab->r[j].key>tab->r[0].key&&i<j) j--; //从右向左找第1个小于标准值的位置j if(i<j) //找到了,位置为j { tab->r[i].key=tab->r[j].key;i++; } //将第j个元素置于左端并重置i while(tab->r[i].key<tab->r[0].key&&i<j) i++; //从左向右找第1个大于标准值的位置i if(i<j) //找到了,位置为i { tab->r[j].key=tab->r[i].key;j--; } //将第i个元素置于右端并重置j }while(i!=j);tab->r[i]=tab->r[0]; //将标准值放入它的终于位置,本次划分结束
quicksort(tab,left,i-1); //对标准值左半部递归调用本函数 quicksort(tab,i+1,right); //对标准值右半部递归调用本函数 }}----------------
ok,咱们,还是以上述相同的数组,应用此快排算法的版本号二,来演示此排序过程:这次,以数组中的第一个元素2为主元。
2(主) 8 7 1 3 5 6 4请细看:
2 8 7 1 3 5 6 4 i-> <-j (找大) (找小)一、jj找第一个小于2的元素1,1赋给(覆盖重置)i所指元素2得到: 1 8 7 3 5 6 4 i j 二、ii找到第一个大于2的元素8,8赋给(覆盖重置)j所指元素(NULL<-8) 1 7 8 3 5 6 4 i <-j三、j
j继续左移,在与i碰头之前,没有找到比2小的元素,结束。最后,主元2补上。第一趟快排结束之后,数组变成: 1 2 7 8 3 5 6 4第二趟,
7 8 3 5 6 4 i-> <-j (找大) (找小) 一、jj找到4,比主元7小,4赋给7所处位置得到: 4 8 3 5 6 i-> j二、ii找比7大的第一个元素8,8覆盖j所指元素(NULL) 4 3 5 6 8 i j 4 6 3 5 8 i-> j i与j碰头,结束。第三趟: 4 6 3 5 7 8......下面,分析原理,一致,略过。最后的结果,例如以下图所看到的: 1 2 3 4 5 6 7 8相信,经过以上内容的详细分析,你一定明了了。最后,贴一下我画的关于这个排序过程的图:
完。一月五日补充。
OK,上述俩种算法,明确一种就可以。-------------------------------------------------------------
五、高速排序的最坏情况和最快情况。
最坏情况发生在划分过程产生的俩个区域分别包括n-1个元素和一个0元素的时候,即假设算法每一次递归调用过程中都出现了,这样的划分不正确称。那么划分的代价为O(n),由于对一个大小为0的数组递归调用后,返回T(0)=O(1)。估算法的执行时间能够递归的表示为:T(n)=T(n-1)+T(0)+O(n)=T(n-1)+O(n).
能够证明为T(n)=O(n^2)。因此,假设在算法的每一层递归上,划分都是最大程度不正确称的,那么算法的执行时间就是O(n^2)。
亦即,高速排序算法的最坏情况并不比插入排序的更好。此外,当数组全然排好序之后,高速排序的执行时间为O(n^2)。而在相同情况下,插入排序的执行时间为O(n)。
//注,请注意理解这句话。我们说一个排序的时间复杂度,是仅仅针对一个元素的。
//意思是,把一个元素进行插入排序,即把它插入到有序的序列里,花的时间为n。再来证明,最快情况下,即PARTITION可能做的最平衡的划分中,得到的每一个子问题都不能大于n/2.由于当中一个子问题的大小为|_n/2_|。还有一个子问题的大小为|-n/2-|-1.在这样的情况下,高速排序的速度要快得多。为, T(n)<=2T(n/2)+O(n).能够证得,T(n)=O(nlgn)。
直观上,看,高速排序就是一颗递归数,当中,PARTITION总是产生9:1的划分,
总的执行时间为O(nlgn)。各结点中示出了子问题的规模。每一层的代价在右边显示。每一层包括一个常数c。完。
July、二零一一年一月四日。=============================================请各位自行,思考下面这个版本号,相应于上文哪个版本号? HOARE-PARTITION(A, p, r) 1 x ← A[p]
2 i ← p - 1 3 j ← r + 1 4 while TRUE 5 do repeat j ← j - 1 6 until A[j] ≤ x 7 repeat i ← i + 1 8 until A[i] ≥ x 9 if i < j10 then exchange A[i] ↔ A[j]11 else return j
我经常思考,为什么有的人当时明明读懂明确了一个算法,
而一段时间过后,它又对此算法全然陌生而不了解了列?我想,究其根本,还是没有彻底明确此高速排序算法的原理,与来龙去脉...那作何改进列,仅仅能找发明那个算法的原作者了,从原作者身上,再多挖掘点实用的东西出来。
July、二零一一年二月十五日更新。
=========================================
最后,再给出一个高速排序算法的简洁演示样例: Quicksort函数void quicksort(int l, int u){ int i, m; if (l >= u) return; swap(l, randint(l, u)); m = l; for (i = l+1; i <= u; i++) if (x[i] < x[l]) swap(++m, i); swap(l, m); quicksort(l, m-1); quicksort(m+1, u);}假设函数的调用形式是quicksort(0, n-1),那么这段代码将对一个全局数组x[n]进行排序。
函数的两个參数各自是将要进行排序的子数组的下标:l是较低的下标,而u是较高的下标。函数调用swap(i,j)将会交换x[i]与x[j]这两个元素。
第一次交换操作将会依照均匀分布的方式在l和u之间随机地选择一个划分元素。ok,很多其它请參考我写的关于高速排序算法的第二篇文章:,第三篇文章:。
July、二零一一年二月二十日更新。